動(dòng)物的腸道微生物群在自身機(jī)體的營養(yǎng)吸收、免疫系統(tǒng)發(fā)育以及減少病原菌感染等方面發(fā)揮著重要作用,機(jī)體通過腸道微生物調(diào)節(jié)微生態(tài),從而達(dá)到促進(jìn)生長(zhǎng)、維持健康的結(jié)果[1]。大量研究表明,養(yǎng)殖雞的腸道微生態(tài)與雞的整體性能和腸道健康有很大的關(guān)聯(lián)性[2-7],這會(huì)影響到最終的養(yǎng)殖效益。
Jianmin 等人[12]選取288只50周齡的海蘭褐蛋雞,分為3個(gè)處理組(每組8個(gè)重復(fù),每個(gè)重復(fù)12只雞),分別在飼糧中添加0、200、400 mg/kg 的低聚木糖(純度95%),試驗(yàn)為期12周。試驗(yàn)結(jié)果表明: Table1 和 Table2 所示,與對(duì)照組相比,添加200和400 mg/kg 低聚木糖飼糧的蛋雞料蛋比(FCR)顯著降低(P <0.05);在第12周時(shí), 低聚木糖添加組的蛋黃顏色值增加(P <0.05)。 |
(2)消化性能 Table3 所示,與對(duì)照組相比, 低聚木糖添加組蛋雞總能(GE)的表觀總腸道消化率系數(shù)(ATTD)顯著增加(P<0.05);飼糧中添加200和400 mg/kg 低聚木糖分別使蛋雞氮(N)的表觀總腸道消化率系數(shù)(ATTD)提高了24.0%和23.7% (P<0.05)。 | (3)腸道結(jié)構(gòu)形態(tài) Table4所示,與對(duì)照組相比,飼糧中添加200和400 mg/kg 低聚木糖蛋雞回腸絨毛高度與隱窩深度之比(VH/CD)更高(P<0.05),改善了蛋雞的腸道結(jié)構(gòu),有利于蛋雞的總消化性能和腸道免疫屏障功能。 | |
(4)腸道微生態(tài) 低聚木糖不會(huì)被單胃動(dòng)物的消化酶分解,可直接進(jìn)入雞的腸道,促進(jìn)有益菌的增殖,抑制有害菌的增長(zhǎng),產(chǎn)生抗菌物質(zhì)和短鏈脂肪酸,形成微生物屏障,激活動(dòng)物腸道微生態(tài),改善動(dòng)物的腸道功能,通過調(diào)節(jié)營養(yǎng)物質(zhì)消化率和回腸形態(tài)來改善料蛋比,從而促進(jìn)營養(yǎng)物質(zhì)的吸收利用、調(diào)節(jié)動(dòng)物機(jī)體免疫系統(tǒng),提高動(dòng)物性能,提高養(yǎng)殖效益。 參考文獻(xiàn): [1] Pandit RJ, Hinsu AT, Patel NV, Koringa PG, Jakhesara SJ, Thakkar JR, et al. Microbial diversity and community composition of caecal microbiota in commercial and indigenous indian chickens determined using 16s rDNA amplicon sequencing. Microbiome 2018;6:115e21. [2]Crisol-Martínez E, Stanley D, Geier MS, Hughes RJ, Moore RJ. Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: linking gut microbiota and growth performance in chickens. Appl Microbiol Biotechnol 2017;101:4547e59. [3]Peng Q, Zeng XF, Zhu JL, Wang S, Liu XT, Hou CL, et al. Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens. Poultry Sci 2016;95:893e900 [4]Salaheen S, Kim SW, Haley BJ, Van Kessel JA, Biswas D. Alternative growth promoters modulate broiler gut microbiome and enhance body weight gain. Front Microbiol 2017;8:2088 [5]Wu SR, Li TH, Niu HF, Zhu YF, Liu YL, Duan YL, et al. Effects of glucose oxidase on growth performance, gut function, and cecal microbiota of broiler chickens. Poultry Sci 2019;98:828e41 [6]Zhu N, Wang J, Yu L, Zhang Q, Chen K, Liu B. Modulation of growth performance and intestinal microbiota in chickens fed plant extracts or virginiamycin. Front Microbiol 2019;10:1333. [7]Zou X, Ji J, Qu HX, Wang J, Shu DM, Wang Y, et al. Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poultry Sci 2019;98:4449e56. [8]Craig AD, Khattak F, Hastie P, Bedford MR, Olukosi OA. Xylanase and xylooligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens. Br Poultry Sci 2020;61:70e8. [9]Ribeiro T, Cardoso V, Ferreira LMA, Lordelo MMS, Coelho E, Moreira ASP, et al. Xylooligosaccharides display a prebiotic activity when used to supplement wheat or corn-based diets for broilers. Poultry Sci 2018;97:4330e41. [10]Lin Y, Li WL, Huo QQ, Du CH, Wang ZX, Yi BD, et al. Effects of xylo-oligosaccharide and flavomycin on the immune function of broiler chickens. PeerJ 2018;6: e4435. [11]Pourabedin M, Chen QL, Yang MM, Zhao X. Mannan- and xylo-oligosaccharides modulate cecal microbiota and expression of inflammatory related cytokines and reduce cecal Salmonella enteritidis colonization in young chickens. FEMS Microbiol Ecol 2017;93:fiw226. [12]Jianmin Zhou;Shugeng Wu;Guanghai Qi;Yu Fu;Weiwei Wang;Haijun Zhang. Dietary supplemental xylooligosaccharide modulates nutrient digestibility, intestinal morphology, and gut microbiota in laying hens[J].Animal Nutrition,2021,Vol.7(1): 152-162. |